Notes

Palladium-Catalyzed Coupling of Aryl Arenesulfonates with Organostannanes[†]

Domenico Badone,* Roberto Cecchi, and Umberto Guzzi

Research Center Sanofi-Midy S.p.A., Via Piranesi 38, 20137 Milan, Italy

Received May 14, 1992

Introduction

The palladium-catalyzed cross-coupling reaction of organostannanes with aryltriflates is a versatile, high-yield method for selective carbon-carbon bond formation.¹ However, the synthesis of aryl triflates from phenols is costly, and the products are sometime unstable. 2,3 To the best of our knowledge, aryl fluorosulfonates are the only reported alternatives to anyl triflates in palladium-catalyzed coupling using phenols as starting materials. However, aryl fluorosulfonates are prepared using the noncommercial, highly toxic fluorosulfonic anhydride. 5,6 Aryl arenesulfonates are potentially useful organic electrophiles for this cross-coupling reaction because they are more stable and cost less than aryl triflates. A recent paper on palladium-catalyzed reduction of aryl arenesulfonates⁷ prompted us to study the related coupling with organostannanes. We now report our results on this palladiumcatalyzed coupling.

Results and Discussion

A series of reactions with p-acetylphenyl sulfonates 1a-d and vinyltri-n-butylstannane was examined to establish the best reaction conditions. A halide source (e.g., LiCl)

Ar = a, phenyl; b, mesitylene; c, p-nitrophenyl; d, p-fluorophenyl

is essential for coupling to occur, as Stille pointed out.¹a The reaction works well with p-fluorobenzenesulfonate as the leaving group (Table I). With arylsulfonates 1b-c, conversion of 1 was incomplete or substantial amounts of cleavage products 3 were formed.⁸

The solvent affects the overall rate of reaction (Table II); in agreement with Stille, ^{1a} polar aprotic solvents enhance the rate dramatically (entry 1 vs 4). As the catalyst, Pd(OAc)₂ and PdCl₂(CH₃CN)₂ produce complete conversion of 1d (Table III), but reactions were cleaner with Pd(OAc)₂ (entry 2 vs 4).

We also studied the influence of the palladium ligands on the coupling (Table IV). The results obtained with monodentate phosphines show that more basic ligands give higher product yields (entries 2, 3 vs 1). We also tested tris(p-fluorophenyl)phosphine and tri(p-tolyl)phosphine,

Table I. Effect of Varying Arenesulfonate on the Coupling Reaction^a

 entry	Ar	2 ^b	3 ^b	la−d ^b	
1	la	89.6		10.4	_
2	1 b	52.5		47.5	
3	1c	77.8	22	0.2	
4	1 d	99.3	0.7		

^aReactions were run with 5 mol % of Pd $(OAc)_2$, 5.5 mol % of DPPP, and LiCl (3 equiv) in DMF under N_2 at 90 °C for 24 h. ^b Molar ratio, determined by GLC.

Table II. Effect of Varying Solvent on the Coupling Reaction^a

entry	solvent	2 ^b	3 ^b	$1d^b$	
i	dioxane			100	
2	DMSO	60.9		39.1	
3	CH ₃ CN ^c	22.9		77	
4	DMF	99.3	0.7		

 aReactions were run with 5 mol % of Pd(OAc)2, 5.5 mol % of DPPP and LiCl (3 equiv) under N_2 at 90 °C for 24 h. b Molar ratio, determined by GLC. °Reaction run at 70 °C.

Table III. Effect of Varying Catalyst on the Coupling Reaction^a

entry	catalyst ^c	2^b	3 ^b	$1\mathbf{d}^b$	
1	PdCl ₂	60.9	0.2	38.9	
2	Pd(OAc) ₂	99.3 (86)	0.7		
3	$PdCl_2(Ph_3P)_2$	79.1	5.5	15.4	
4	PdCl ₂ (CH ₃ CN) ₂	98.9 (60)		1	

^aReactions were run with 5 mol % of DPPP and LiCl (3 equiv) in DMF under N_2 at 90 °C for 24 h. ^bMolar ratio, determined by GLC. Numbers in parentheses are for pure, isolated 2. ^c5 mol %.

Table IV. Effect of Varying Ligand on the Coupling Reaction^a

		1000001011							
monodentate phosphine ^b									
entry	ligand	$\begin{array}{c} ext{cone} \\ ext{angle } heta,^c \\ ext{deg} \end{array}$	2 ^d	3^d	1 d ^d				
1	PPh ₃	145	65	0.7	34.3				
2	$P(p\text{-}CH_3OPh)_3$	145	97.3	1.4	1.3				
3	Ph ₂ PCH ₃ e	136	100						

bidentate phosphine

entry	ligand	P-Pd-P angle, deg	2 ^d	3 ^d	$1\mathbf{d}^d$
4	Ph ₂ PCH ₂ CH ₂ PPh ₂	~85*	80.7	18	17.5
5	Ph ₂ PCH ₂ CH ₂ CH ₂ PPh ₂	~90⁵	99.3	0.7	
6	Ph ₂ PCH ₂ CH ₂ CH ₂ CH ₂ PPh ₂	≥90հ	88.5	1.9	9.6
7	Me ₂ PCH ₂ CH ₂ PMe ₂		93.2		6.8

^aReactions were run with 5 mol % of Pd $(OAc)_2$ and LiCl (3 equiv) in DMF under N_2 at 90 °C for 24 h. ^b11 mol %. ^cSee ref 19. ^d Molar ratio, determined by GLC. ^eReaction quenched after 14 h. ^f5.5 mol %. ^eSee ref 20. ^hSee ref 21.

but in these cases, to our surprise, many byproducts were formed. The results with electronically similar chelating

[†]Presented in part at the 6th OMCOS, August 25-29, 1991, Utrecht, The Netherlands.

^{(1) (}a) Echavarren, A. M.; Stille, J. K. J. Am. Chem. Soc. 1987, 109, 5478. (b) Fu, J. M.; Snieckus, V. Tetrahedron Lett. 1990, 31, 1665. (c) Ohe, T.; Miyaura, N.; Suzuki, A. Synlett 1990, 221.

⁽²⁾ For a review of the chemistry of triflates, see: Stang, P. G.; Hanack, M.; Subramanian, L. R. Synthesis 1982, 85.

Table V. Palladium-Catalyzed Coupling of Aryl p-Fluorobenzenesulfonates with Organostannanes

entry	<i>p</i> -fluoro- benzene	organostannane	ligand ^b	T, °C	reaction time, h	product(s)	isolated yield, %
	Sulfonase		ngunu		VIIIO, II	produce(s)	
1	1d	n – Bug Sn	DPPP	90	24	2	86
2		-	Ph2PCH3	90	14	2	56
3		n-Bu ₄ Sn	DPPP	100	48	}- ⊚-∕`_₄	50
4			Ph2PCH3	120	26	4	67
5		n – Bug Sn	Ph ₂ PCH ₃	100	26	+ }-@-/ ⁻	45
6			DPPP	100	18	(Ratio 100:0) 5 + 6 (Ratio 65:35)	80
7		n – Bug SnPh	DPPP	110	24	©-©-√',	85
8		DL	Ph ₂ PCH ₃	110	22	7	72
9		n-Bu ₃ Sn Ph	DPPP	100	20		69
10	OO g	n - Bug Sn	DPPP	100	3,0	00 10	50
11	(C) 1 (S029 FPh 11	n – Bug SnPh	Pb ₂ PCH ₃	130	26	© 	68
12	8r-(0)-030 ₂₀ FF2	n-Bug Sn	Ph ₂ PCH ₃	90	26	//	25
13			DPPP	90	19	14	50
14	- 050 ₂₀ FFh 15	n – Bu ₃ SnPh	Ph ₂ PCH ₃	110	76	©—© 16	41 ^c
15			DPPP	110	72	050 ₂	70
16	80-090 ₂₀ FPh	n – Bug Sn	DPPP	110	96	m-(O-// 19	12
						+ ELO - COO ₂ - CO- R(CE ₃) ₂ 20	13
17			Ph ₂ PCH ₃	110	88	20	34 ^d

^aReactions were run with 5 mol % of Pd (OAc)₂ ligand and LiCl (3 equiv) in DMF under N₂. ^bDPPP 5.5 mol %, Ph₂PCH₃ 11 mol %. ^cConversion 76%. ^dConversion 72%.

biphosphines 1,2-bis(diphenylphosphino)ethane (DPPE), 1,3-bis(diphenylphosphino)propane (DPPP), and 1,4-bis(diphenylphosphino)butane (DPPB) show that steric effects also play an important role in the coupling. The best

 ⁽³⁾ Subramanian, L. R.; Bentz, H.; Hanack, M. Synthesis 1973, 293.
 (4) Roth, G. P.; Fuller, C. E. J. Org. Chem. 1991, 56, 3493.

⁽⁵⁾ Kongpricha, S.; Preusse, W. C.; Schwarer, R. Inorg. Synth. 1968, 11, 151.

ligands are DPPP and methyldiphenylphosphine, which is intriguing in view of the opposite results obtained with these ligands in the Stille reaction. 9,10

Generally, aryl p-fluorobenzenesulfonates couple with aryl-, vinyl-, and alkyltin reagents more sluggishly than with aryl triflates, but with comparable yields (Table V). An exception is the allyltin reagent (entry 6), which couples faster (18 h at 100 °C vs 43 h at 98 °C) giving a 65:35 mixture of 5 and 6.11 Using methyldiphenylphosphine as the palladium ligand in the reaction with allyltin, pure 5 is obtained in moderate yields (entry 5). Allyltri-n-butyltin and aryltri-n-butyltin couple without transfer of the alkyl group. Vinylstannane reacts with p-bromophenyl pfluorobenzenesulfonate chemoselectively at the bromine atom (entries 12, 13), with fairly good yields. Aryl pfluorobenzenesulfonates with electron-donating groups react slowly, and sometimes appreciable amounts of starting materials are recovered (entries 14, 17) and products of reaction at the p-fluorobenzene moiety 17 and 20 are also obtained. Displacement of the halogen of aryl fluoride by nucleophilic nitrogen species is a well-known reaction. 12 On the other hand, attempts to couple 15 with tri-n-butylphenyltin without palladium catalyst gave only starting material after 80 h, suggesting that palladium assists the formation of nucleophilic nitrogen species. 13

Conclusion

The results of palladium-catalyzed cross-coupling of aryl p-fluorobenzenesulfonates with organostannanes differ according to the substitution on the aryl group: electron-donating groups give very poor yields and/or undesidered products, while with other substituents crosscoupling is efficient with alkyl-, vinyl-, allyl-, and arylstannanes. Utilization of p-fluorobenzenesulfonates in the Stille reaction offers two advantages over triflates: they cost less and starting materials are crystalline instead of

Experimental Section

Elemental analyses were performed by the microanalytical laboratory of the Department of Chemistry of the University of Milan. The GLC analyses were carried out with an Ultra 1HP column (25-m length, 0.32-mm i.d.) and a flame ionization detector. Preparative column chromatography was done by the flash technique.14 All reactions were carried out under positive argon pressure. 1,4-Dioxane was distilled from sodium and stored over activated 4-A sieves. Dry DMF, DMSO, and CH₃CN were obtained by distillation from calcium hydride and stored over molecular sieves.

(6) Muetterties, E. L.; Coffman, D. D. J. Am. Chem. Soc. 1958, 80,

Organostannanes. Phenyltri-n-butylstannane and (E)styryltri-n-butylstannane were prepared according to published procedures. 15,16 Vinyltri-n-butylstannane, allyltri-n-butylstannane, and tetra-n-butylstannane (Aldrich) were used as purchased.

Aryl Arenesulfonates. General Procedure. 1-Naphthyl p-Fluorobenzenesulfonate (9). A solution of 4-fluorobenzenesulfonyl chloride (3.00 g, 15.3 mmol) in 2 mL of pyridine was slowly added to a solution of 1-naphthol (2.00 g, 13.9 mmol) in 4 mL of pyridine at 0 °C. The resulting mixture was allowed to warm to room temperature and stirred for 3 h. The mixture was poured into water and extracted with ethyl ether. The ether extract was washed sequentially with water, 5% aqueous hydrochloric acid solution, and water, dried (Na₂SO₄), and concentrated to yield an oil which solidified on standing. Recrystallization from isopropyl ether afforded 3.8 g (90%) of 9 as a white solid: mp 87-89 °C; IR (KBr) 1590, 1492, 1371, 1186 cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6) δ 8.10-7.73 (m, 5 H), 7.63-7.37 (m, 5 H), 7.29–7.16 (m, 1 H). Anal. Calcd for $C_{16}H_{11}FO_3S$: C, 63.57; H, 3.67. Found: C, 63.41; H, 3.65.

8-Quinolyl p-fluorobenzenesulfonate (11) (85%): white solid; mp 120-122 °C; IR (KBr) 1591, 1490, 1378, 1188, 837, 777 cm⁻¹; 1 H NMR (200 MHz, DMSO- d_6) δ 8.81–8.73 (m, 1 H), 8.45-8.35 (m, 1 H), 8.10-7.84 (m, 3 H), 7.73-7.37 (m, 5 H). Anal. Calcd for C₁₅H₁₀FNO₃S: C, 59.39; H, 3.32. Found: C, 59.21; H,

4-Bromophenyl p-fluorobenzenesulfonate (13) (88%): white solid; mp 62-64 °C; IR (KBr) 1589, 1494, 1373, 1155, 838 cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6) δ 7.89–7.77 (m, 2 H), 7.41 (dd, J = 9.8, 3.5 Hz, 2 H), 6.86 (dd, J = 9.8, 3.5 Hz, 2 H). Anal. Calcd for C₁₂H₈BrFO₃S: C, 43.52; H, 2.43. Found: C, 43.65; H,

Cross-Coupling Reactions with Organostannanes. General Procedure. 4-Acetylbiphenyl (7). LiCl (215 mg, 5.07 mmol), DPPP (38.5 mg, 0.093 mmol), and Pd(OAc)₂ (19 mg, 0.084 mmol) were added to a solution of 1d (500 mg, 1.7 mmol) in 7.5 mL of DMF. After 5 min of stirring, the resulting suspension became a pale yellow solution, and phenyltri-n-butylstannane (748 mg, 2.04 mmol) was added. The mixture was heated at 110 °C with stirring for 24 h. Then pyridine (1 mL) and 1.8 mL of pyridinium fluoride (1.4 M solution in THF, 2.52 mmol)¹⁷ were added to the cooled reaction mixture, which was stirred overnight. The solution was diluted with ether (50 mL), filtered, washed with water, dried (Na₂SO₄), and concentrated to give the crude product. Chromatography (hexane-EtOAc, 99:1) yielded 7 as a white solid (285 mg, 85%): mp 119–120 °C (lit. 18 mp 121 °C). Anal. Calcd for $\rm C_{13}H_{12}O$: C, 85.68; H, 6.16. Found: C, 85.44; H, 6.12. Yields of products synthesized by this methodology are listed in Table

3-Tolyl 4-(dimethylamino)benzenesulfonate (17) (70%): white solid; mp 120–122 °C; IR (KBr) 1593, 1360, 1176, 1159 cm⁻¹; ¹H NMR (200 MHz, DMSO- d_6) δ 7.55–7.45 (m, 2 H), 7.26–7.03 (m, 2 H), 6.87-6.63 (m, 4 H), 3.01 (s, 3 H), 2.24 (s, 3 H). Anal. Calcd for C₁₅H₁₇NO₃S: C, 61.83; H, 5.88. Found: C, 61.78; H,

Registry No. 1a, 64101-66-2; **1b**, 143858-70-2; **1c**, 55660-68-9; 1d, 123412-35-1; 2, 10537-63-0; 4, 37920-25-5; 5, 17417-03-7; 6, 62926-84-5; 7, 92-91-1; 8, 3112-03-6; 9, 123412-32-8; 10, 826-74-4; 11, 143858-71-3; 12, 605-04-9; 13, 143858-72-4; 14, 143858-73-5; **15**, 143858-74-6; **16**, 643-93-6; **17**, 143858-75-7; **18**, 143858-76-8; 19, 5459-40-5; 20, 143858-77-9; DPPP, 6737-42-4; n-Bu₃SnCH= CH₂, 7486-35-3; n-Bu₄Sn, 1461-25-2; n-Bu₃SnCH₂CH=CH₂, 24850-33-7; n-Bu₃SnPh, 960-16-7; n-Bu₃SnCH=CHPh, 79159-76-5; Ph₂PCH₃, 1486-28-8; Pd(OAc)₂, 3375-31-3; 4-fluorobenzenesulfonyl chloride, 349-88-2; 1-naphthol, 90-15-3; 8quinolinol, 148-24-3; 4-bromophenol, 106-41-2.

⁽⁷⁾ Cabri, W.; De Bernardinis, S.; Francalanci, F.; Penco, S. J. Org. Chem. 1990, 55, 350.

⁽⁸⁾ Subramanian, L. R.; Hanack, M.; Chang, L. W. K.; Imhoff, M. A.; Schleyer, P. v. R.; Effenberger, F.; Kurtz, W.; Stang, P. J.; Dueber, T. E. J. Org. Chem. 1976, 41, 4099.

⁽⁹⁾ Farina, V.; Krishnan, B. J. Am. Chem. Soc. 1991, 113, 9585. (10) The accepted mechanism for the Stille coupling involves three basic steps: oxidative addition, transmetalation, reductive elimination: Stille, J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508.

⁽¹¹⁾ Different ratios of 5:6 from p-bromoacetophenone and p-acetylphenyl triflate have been reported, see: (a) Reference 1a. (b) Kosugi, M.; Sasazawa, K.; Shimizu, Y.; Migita, T. Chem. Lett. 1977, 301. (12) (a) Levy, A. L.; Chung, D. J. Am. Chem. Soc. 1955, 77, 2899. (b) Lloyd, P. F.; Roberts, G. P. J. Chem. Soc. 1963, 2962. (c) Bader, H.;

Hansen, A. R.; McCarty, F. J. J. Org. Chem. 1966, 31, 2319. (d) Essassi, E. M. Heterocycles 1985, 23, 799. (e) Krapcho, A. P.; Avery, K. L. J. Org. Chem. 1988, 53, 5927.

⁽¹³⁾ S-O bond cleavage assisted by Pd has been reported previously (see ref 7).

⁽¹⁴⁾ Still, W. C.; Kahn, M.; Mitra, A. J. Org. Chem. 1978, 43, 2023.

⁽¹⁵⁾ Gielen, M.; De Poorter, B. Rev. Silicon, Germanium, Tin, Lead Compd 1977, 3, 9,

⁽¹⁶⁾ Labadie, J. W.; Tueting, D.; Stille, J. K. J. Org. Chem. 1983, 48, 4634.

⁽¹⁷⁾ Trost, B. M.; Caldwell, C. G.; Murayama, E.; Meissler, D. J. Org. Chem. 1983, 48, 3252.

⁽¹⁸⁾ Long, L. M.; Henze, H. R. J. Am. Chem. Soc. 1941, 63, 1939.
(19) Tolman, C. A. Chem. Rev. 1977, 77, 313.
(20) Steffen, W. L.; Palenik, G. J. Inorg. Chem. 1976, 15, 2432.

⁽²¹⁾ Sanger, A. R. J. Chem. Soc., Chem. Commun. 1977, 1971.